

Worksheet: Binary Search Example

1. A teacher has a sorted list of names from a class, as shown below. For each stage, write “**s**” for the start index, “**m**” for the middle index, and “**e**” for the end index in order to identify the stages of a **binary search** to find the name “**Jackson**” in the list. In order to calculate the middle index, use: $(\text{start}+\text{end}) \text{ DIV } 2$. The indices of the array are written above the first stage to help you. (Page 30, question 6)

	0	1	2	3	4	5	6	7	8	9
Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall	
a)	s				m					e
b)						s		m		e
c)						s, m	e			
d)							s, m, e			

e) How many times did the algorithm need to compare two names before it was able to find the name “Jackson”?

4

It is always the middle element that is compared, notice the four highlighted “m” in the table.

2. Now find the name “**Linton**” in the list using the same process. Again, calculate the middle index with: $(\text{start}+\text{end}) \text{ DIV } 2$.

	0	1	2	3	4	5	6	7	8	9
Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall	
a)	s				m					e
b)	s	m		e						
c)			s, m	e						
d)										

e) How many times would the algorithm need to compare two names in order to find the name “Linton”?

3

Worksheet: Binary Search Example

2. Now show how the binary search algorithm would search for the name “Johnson” in the list, calculating the middle using: $(\text{start}+\text{end}) \text{ DIV } 2$. Note that the element is not in the list and the algorithm determines this when $\text{start} > \text{end}$.

	0	1	2	3	4	5	6	7	8	9
Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall	
a)	S				m					e
b)	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
c)						S	m	e		
d)	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
e)							e	S		

f) How many time would the algorithm need to compare two names before exiting if the list was searched for the name “Johnson”?

4

4. Show how the binary search algorithm would search for the name “Nielsen” in the list, calculating the middle using: $(\text{start}+\text{end}) \text{ DIV } 2$. Note that the element is, again, not in the list. (7)

	0	1	2	3	4	5	6	7	8	9
Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall	
a)	S				m					e
b)	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
c)							S	m	e	
d)	Azikewe	Bloom	Byrne	Davidson	Gateri	Hinton	Jackson	Linton	Smith	Wall
e)							e	S		

e) How many time would the algorithm need to compare two names before exiting if the list was searched for the name “Nielsen”? Hint: the answer is not the same as (3f).

3